Effects of Low-Intensity Microwave Radiation on Oxidant-Antioxidant Parameters and DNA Damage in the Liver of Rats

Alkis ME, Akdag MZ, Dasdag S. Effects of Low-Intensity Microwave Radiation on Oxidant-Antioxidant Parameters and DNA Damage in the Liver of Rats. Bioelectromagnetics. 2020 Dec 25. doi: 10.1002/bem.22315. Epub ahead of print. PMID: 33368426.

Abstract

The continuously increasing usage of cell phones has raised concerns about the adverse effects of microwave radiation (MWR) emitted by cell phones on health. Several in vitro and in vivo studies have claimed that MWR may cause various kinds of damage in tissues. The aim of this study is to examine the possible effects of exposure to low-intensity MWR on DNA and oxidative damage in the livers of rats. Eighteen Sprague-Dawley male rats were divided into three equal groups randomly (n = 6). Group 1 (Sham-control): rats were kept under conditions the same as those of other groups, except for MWR exposure. Group 2: rats exposed to 1800 MHz (SAR: 0.62 W/kg) at 0.127 ± 0.04 mW/cm2 power density, and Group 3: rats exposed to 2,100 MHz (SAR: 0.2 W/kg) at 0.038 ± 0.03 mW/cm2 power density. Microwave application groups were exposed to MWR 2 h/day for 7 months. At the end of the exposure period, the rats were sacrificed and DNA damage, malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), and total oxidant-antioxidant parameter analyses were conducted in their liver tissue samples. It was found that 1800 and 2100 MHz low-intensity MWR caused a significant increase in MDA, 8-OHdG, total oxidant status, oxidative stress index, and comet assay tail intensity (P < 0.05), while total antioxidant status levels (P < 0.05) decreased. The results of our study showed that whole-body exposure to 1800 and 2100 MHz low-intensity MWR emitted by cell phones can induce oxidative stress by altering oxidant-antioxidant parameters and lead to DNA strand breaks and oxidative DNA damage in the liver of rats. Bioelectromagnetics. © 2020 Bioelectromagnetics Society.

https://pubmed.ncbi.nlm.nih.gov/33368426/

Related Posts

%d bloggers like this: