Honey Bee Proteolytic System and Behavior Parameters under the Influence of an Electric Field at 50 Hz and Variable Intensities for a Long Exposure Time

Migdał, P.; Murawska, A.; Strachecka, A.; Bieńkowski, P.; Roman, A. Honey Bee Proteolytic System and Behavior Parameters under the Influence of an Electric Field at 50 Hz and Variable Intensities for a Long Exposure Time. Animals 2021, 11, 863. https://doi.org/10.3390/ani11030863

Simple Summary

The amount of electromagnetic field (EMF) in the environment emitted by electrical and electronic devices, mobile phone masts, or power lines is constantly increasing. Honey bee can be exposed to the EMF in the environment, and the influence of this factor on bees is still under consideration. Studying the impact of EMF on honey bees can give valuable information about whether it poses a threat to them. The honey bee is an important pollinator, playing a significant role in maintaining biodiversity and food production. Our research showed that a 50 Hz electric field at various intensities reduced the number of occurrences of walking, contacts between individuals, and self-grooming, and increased the activity of proteases, which are involved in the immune system response.

Abstract

The effect of an artificial electromagnetic field on organisms is a subject of extensive public debate and growing numbers of studies. Our study aimed to show the effect of an electromagnetic field at 50 Hz and variable intensities on honey bee proteolytic systems and behavior parameters after 12 h of exposure. Newly emerged worker bees were put into cages and exposed to a 50 Hz E-field with an intensity of 5.0 kV/m, 11.5 kV/m, 23.0 kV/m, or 34.5 kV/m. After 12 h of exposure, hemolymph samples were taken for protease analysis, and the bees were recorded for behavioral analysis. Six behaviors were chosen for observation: walking, flying, self-grooming, contact between individuals, stillness, and wing movement. Bees in the control group demonstrated the highest number of all behavior occurrences, except flying, and had the lowest protease activity. Bees in the experimental groups showed a lower number of occurrences of walking, self-grooming, and contacts between individuals than the control bees and had significantly higher protease activity than the control bees (except that of alkaline proteases in the 23.0 kV/m group).

Full text: https://www.mdpi.com/2076-2615/11/3/863/htm

5. Conclusions

The amount of artificial electromagnetic field in the environment is constantly increasing, thus the honey bee is exposed to this factor. In our study, bees in the control group demonstrated the highest number of all behavior occurrences, except flying, and had the lowest activity of all types of proteases. Bees in the experimental groups showed a lower number of walking, self-grooming, and contact between individual occurrences than control bees and had higher protease activity than control bees. Our results show that an E-field is potential harmful factor to the honey bee. However, we do not know if the changes in behavior and protease activity of the honey bee after E-field exposure persist and for how long. It would be important to investigate behavior parameters and biochemical markers at different time intervals after the end of exposure to an E-field. It can be helpful to determine the interaction between the biochemical marker activity and behavioral parameters. Such an observation could provide a better understanding of the immune response of the honey bee exposing to environmental stressors.

Related Posts

%d bloggers like this: