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A B S T R A C T

New technologies in electronics and communications are continually emerging. An increasing use of these
electronic devices such as mobile phone, computer, wireless fidelity connectors or cellular towers is raising
questions concerning whether they have an adverse effect on the body. Exposure to electromagnetic fields (EMF)
is frequently suggested to have adverse health effects on humans and other organisms. This idea has been
reported in many studies. In contrast, the therapeutic effects of EMF on different organs have also been reported.
Research findings are inconsistent. This has given rise to very profound discrepancies. The duration and fre-
quency of mobile phone calls and the association observed with various health effects has raised serious concerns
due to the frequency with which these devices are used and the way they are held close to the head. The present
review assesses the results of in vitro, in vivo, experimental, and epidemiological studies. The purpose of the study
is to assess data concerning the carcinogenic and genotoxic effects of non-ionizing EMF. The major genotoxic and
carcinogenic effects of EMF, divided into subsections as low frequency effects and radiofrequency effects, were
reviewed. The inconsistent results between similar studies and the same research groups have made it very
difficult to make any comprehensive interpretation. However, evaluation of current studies suggests that EMF
may represent a serious source of concern and may be hazardous to living organisms.

1. Introduction

With the impact of the globalization, the world has entered a time of
change and development. This is leading to rapid population growth
and energy consumption (Asumadu-Sarkodie and Owusu, 2016). Fast
growing wireless broadband and communication technologies have
become the main source of global pollution by creating threats to the
environment and human life, while at the same time providing concrete
solutions to the emerging needs of globalization (Milner et al., 2012).
Today, with the widespread use of electric devices, electromagnetic
fields (EMF) have become a particularly important global phenomenon,
and one that is creating concerns and worries among many people
(Miclaus and Calota, 2010; Stather, 1997).

EMF consists of both electric and magnetic fields of force (Phillips,
2013). It was first discovered during the 19th century (Berkson, 2000),
however, it has been present since life first emerged, due to its generation
via natural phenomena (Sher, 1997). All living things are continuously
exposed to EMF from natural sources at levels between 25 μT and 65 μT
(Gould, 1984). In addition to natural sources of EMF, living organisms are
also exposed to EMF generated by human-made sources, such as cell
phones, cell phone base stations, radio stations, computer screens and
many other electrical devices widely used in daily life (Berg, 1992).

The question of whether exposure to EMF is beneficial or hazardous
is still the subject of much debate. This debate is encouraging research
to determine whether or not it is safe to live with constant exposure to
EMF (Kheifets and Ritz, 2006). Numerous studies have shown the im-
pact of EMF on animals, tissues (Aydin and Akar, 2011; Sonmez et al.,
2010), and the functional features of cells (Koch et al., 2003; Liburdy
et al., 1993), but the findings are still considered preliminary. In con-
trast, many studies have reported therapeutic effects of EMF on various
organs and body systems, including reversal of cognitive impairment in
Alzheimer's disease (AD) (Arendash et al., 2010), stimulation of the
repair mechanism in bone and cartilage (Bai et al., 2013; Haddad et al.,
2007; Trock et al., 1994), wound healing, and nerve regeneration
(Mohammadi and Mahmoodzadeh, 2015).

Some of the main features of EMF are its frequency and wavelength,
both of which interact with living organisms in different ways (Grimes
and Grimes, 2002; Panagopoulos et al., 2002). The biological effects of
EMF depend on the frequency or wavelength. The purpose of this re-
view is to summarize and analyze existing studies that describe the
association between EMF and their carcinogenic and genotoxic effects
on living organisms. A secondary aim is to contribute to the current
debate on the possible impacts of EMF, and whether or not EMF ex-
posure is dangerous to humans.
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In the first section, EMF and its main ranges are explained.
Frequencies and wavelengths are described and differences set out.
Then, non-ionizing range is divided into subsections based on fre-
quency. Within the subsections, existing experimental and epidemio-
logical studies are reviewed in terms of genotoxic and carcinogenic
effects.

2. Classification of EMFs

EMF is produced by electrically charged objects and may be defined
as a combination of electric fields (EF) and magnetic fields (MF).
Electromagnetic waves are carried by particles known as photons
(quanta) (Feynman, 1974). EMF exhibits its characteristic features via
the interrelated parameter of wavelength and frequency. Frequency is
measured in terms of number of oscillations per second (hertz) and
wavelength describes the distance between one wave and the next,
measured in meters. As the frequency increases, the wavelength be-
comes shorter and carries more energy compares to lower frequency
waves (Hackmann, 1994).

EMF can be divided into two main types depending on the energy
levels of electromagnetic waves. If electromagnetic waves contain en-
ough energy per quantum to ionize molecules, they can break the bonds
between molecules and cause chemical reactions (Sher, 1997). These
waves are known as 'ionizing radiation' and have the potential to damage
living cells, causing cancer, tumors and genetic damage (Sukhoviia
et al., 1975). High ultraviolet, X-rays and gamma rays are some forms of
ionizing radiation. If the quanta energy levels are insufficient to break
molecular bonds, these electromagnetic waves are known as 'non-io-
nizing radiation'. Low and extremely low frequency (ELF) radio-
frequency (RF) microwaves and visual light are some forms of non-io-
nizing radiation. Common man-made sources of non-ionizing radiation
include microwave ovens, computers, wireless networks, cell phones,
and power lines.

3. Effects of non-ionizing radiation frequencies

3.1. Extremely low frequency effects

Frequencies up to approximately 300 Hz (Hz) are known as ex-
tremely low frequency (ELF), and are part of the non-ionizing radiation
range of the electromagnetic spectrum. The fields emitted by power
lines, railways, and electrical devices at home and in the workplace are
in the ELF range. The effects of both EF and MF on biological systems
are highly controversial. Recent studies have focused on the illumina-
tion of their potential genotoxic, carcinogenic, and neurological effects.
The effects of ELF on genotoxicity and carcinogenicity are summarized
(Table 1). This section therefore includes studies summarizing the
genotoxic and carcinogenic effects of ELF.

3.1.1. Genotoxicity
The absence of an accepted general mechanism that explains how

EMF affects biological systems poses a great challenge in interpreting
experimental data from EMF studies. The effect mechanism of EMF on
DNA and RNA is still unknown. As the energy level of non-ionize EMF is
not sufficient to break the intermolecular chemical bonds, the in-
tracellular effects of EMF appear indirectly. The most prominent of
these indirect ways is the effect of free radicals. When the number of
free radicals is increased in the cell, structures such as DNA, RNA,
protein, and membrane lipids are damaged due to the oxidative stress
(Cassien et al., 2015; Dinu et al., 2016; Dizdaroglu and Jaruga, 2012;
Lagouge and Larsson, 2013; Storr et al., 2013). It has been shown that
EMF triggers the increase of free radical in the cell by the Fenton re-
action (Lai and Singh, 2004). Through the Fenton reaction, hydrogen
peroxide, the oxidative respiratory product in the mitochondria, is
converted to free hydroxyl molecules via catalysis with iron (Floyd,
1981; Henle et al., 1996).

It has been suggested that ELF shows its effect on the cell in two
steps (Lai and Singh, 2004). In the first step ELF mediates iron meta-
bolism and increases the amount of free iron in the cytoplasm, parti-
cularly in the nucleus due to of the presence of numerous numbers of
iron pumps within the nuclear membrane (Meneghini, 1997). An in-
creased iron concentration accelerates the formation of free hydroxyl
radicals through Fenton reactions. The hydroxyl radicals act on DNA,
RNA, cell membrane lipids, and proteins inside of the cell. As a result of
lipid damage in the cell membrane (lipid peroxidation), calcium
leakage increases into the cell. The increase in calcium ions accelerates
the calmodulin-dependent nitric oxide synthesis and triggers the second
step (Lai and Singh, 2004). Nitric oxide is more active than hydroxyl
radicals to damage DNA and other macromolecules. Nitric oxide trig-
gers iron formation from the ferritin, which increases the amount of
iron ions in the cell (Reif and Simmons, 1990). This cycle continues
until the cell undergoes apoptosis or necrosis (Fig. 1). It has also been
suggested that ELF may act by increasing the formation of hydrogen
peroxide, especially in active cells due to their constant mitochondria
functions (Phillips et al., 2009).

Effects on the genetic material of the cell are among the best in-
dicators for showing whether ELF has a genotoxic effect on the cell. In
vivo and in vitro ELF studies report different results and propose dif-
ferent mechanisms to explain the genotoxic effects of ELF (Grundler
et al., 1992).

One of the most interesting issues is whether ELF creates DNA chain
breakage. In one study, hamster lung cells were exposed to 50 Hz ELF to
reveal its effects on autophagy mechanism. ELF exposure did not induce
double-strand breaks (DSBs) in DNA, but it elevated cell surface mod-
ifications and actin filament reorganization. Increased autophagesome
formation and LC3-II expression levels were also observed after ex-
posure to 50 Hz ELF in cultured cells. These results indicate that ELF
does not directly create DNA damage, however DNA damage is an end
product of molecular irregularities resulting from ELF exposure. In
addition, the elevation of autophagy might help to balance homeostasis
against apoptosis (Shen et al., 2016). Similarly, DNA damage, the cell
cycle, and protein expression were investigated in human neuro-
blastoma cells exposed to menadione and 50 Hz ELF. Menadione
treatment increased mitochondrial superoxide production while 24 h
(h) exposure to 50 Hz ELF reduced DNA damage and altered cell cycle
distribution against menadione-induced genotoxic effects in humans
(Luukkonen et al., 2016). Destefanis et al. (2015) investigated the ef-
fects of 50 Hz ELF on human lens epithelial cells (LECs) using molecular
and immunohistochemical methods. Genotoxicity tests revealed no
significant differences between the control and experimental groups.
These results suggested that neither short- nor long-term ELF exposure
causes any DNA damage in LECs in vitro. Feng et al. (2016) reported a
protective effect of 50 Hz ELF against apoptosis in human amniotic
cells. Cell viability, early apoptosis, mitochondrial ROS and the level of
phosphorylated Akt were evaluated. Cells were induced by staur-
osporine to enter early apoptosis and, as a result of ELF exposure, the
level of mitochondrial ROS increased. The team also reported that ELF
is able to reverse apoptotic events using the transient mitochondrial
ROS release and activation of Akt. A recent study assessing the brain
histopathology of freshwater fish exposed to 50 Hz ELF showed that the
expression levels of some antioxidant genes expression levels may
change in response to ROS as a result of exposure to ELF (Samiee and
Samiee, 2017). In a similar manner, menadione was used as a cofactor
to reveal the effect of 50 Hz ELF in human neuroblastoma and glioma
cell lines. In contrast to the previous study, ELF increased the genotoxic
effects, depending on the amount of menadione in co-exposure. 50 Hz
ELF exposure increased cytosolic and mitochondrial superoxide pro-
duction in rat glioma cell lines. Additionally, 50 Hz ELF significantly
increased micronuclei formation – which plays a genotoxic role in the
carcinogenesis mechanism and AD (Kesari et al., 2016). The effects of
50 Hz ELF have also been investigated to reveal energy re-programming
and anti-glycative defence in human neuroblastoma cells. Results
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showed that ELF promoted the proliferative activity of the neuron-de-
rived malignant cells. These finding reveals that ELF may change the
balance of the cellular hemostasis by altering the features of key mo-
lecules and strength its’ suspicious role on the later stages of brain-
derived malignancies (Falone et al., 2016b).

The micronucleus assay is generally used as an in vivo and in vitro
short-term genotoxicity-detecting test. In a 2005 study, Winker and
colleagues exposed the bone marrow of mice to 50 Hz ELF continuously
for 7–28 days. In comparison to the control group, the number of mi-
cronucleated erythrocytes increased three-fold (Winker et al., 2005).
Similar to these results, Alcaraz et al. (2014) reported that the admin-
istration of four antioxidants that have anti-mutagenic and gen pro-
tective features exerts no protective effect against 50 Hz ELF in the
mouse bone marrow. Kesari et al. (2015) investigated the effects of
50 Hz ELF on human neuroblastoma cells. Lipid peroxidation – the
amount of reactive oxygen species (ROS) – and micronucleus formation
were analyzed over periods of 15, 30 and 45 days. Prior to MR ex-
posure, experimental group cells were treated with menadione and the
antioxidant N-acetylcysteine to investigate the potential role of ROS.
After 15 and 30 days of exposure to ELF, the number of micronuclei
increased. The administration of N-acetylcysteine suppressed the effect
of menadione, and cellular ROS levels then decreased. On the other
hand, increased ROS levels were observed after 45 days in the N-acet-
ylcysteine-ELF group. Lipid peroxidation levels also decreased sig-
nificantly 30 and 45 days after exposure to 50 Hz ELF. These results
indicate that ELF exposure may initiate the genomic instability process
and that it may continue for at least 45 days.

Zhu et al. (2016a) reported the effects of 50 Hz ELF on human fetal
scleral fibroblasts (HFSFs). MMP-2, FGF-2, and COL1A1 mRNA levels
that are proportional to scleral structure in HFSFs were assessed. A
significant decrease in COL1A1 mRNA and protein expression levels
suggested that ELF may reduce collagen synthesis. In addition, an in-
crease in the mRNA level of TGFβ−2 might inhibit the growth of
HFSFs.

Comparisons of studies using oxidative stress-inducing agents and
anti-oxidant agents are helping to reveal the genotoxic effects of ELF.
However, contrasting results obtained in other studies have made it
difficult to explain the genotoxic effects of ELF (Table 1). In the pre-
sence of these discrepancies, it is essential to show the genotoxic effects
of ELF by performing repetitive and mechanism clarifying studies.

3.1.2. Carcinogenicity
Many studies have examined the relationship between ELF exposure

and cancer. The results of some epidemiological studies have shown
that exposure to ELF increases the risk of developing childhood leu-
kemia. The International Agency for Research on Cancer (IARC) of the
World Health Organization (WHO) therefore classified ELF as a possible
carcinogenic in humans in 2002 and 2007 (WHO, 2007). In addition to
epidemiological studies, research on experimental animals has been
carried out to reveal the possible mechanisms involved.

Destefanis et al. (2015) investigated the effects of 50 Hz ELF on
human cancer cell growth by observing mitochondrial activity. As a
result of ELF exposure, the respiratory activity of cells was increased
and mitochondrial protein expression was downregulated. The authors
consequently concluded that cancer cell growth was negatively affected
by 50 Hz ELF. To investigate the effects of ELF on angiogenesis, which
plays an important role in cancer development, human umbilical vein
endothelial cells have been exposed to 50 Hz ELF. These were then
injected subcutaneously to the mice in order to observe tumor devel-
opment. This exposure lowered the rate of endothelial cell proliferation
and the number of migrated cells, in comparison to controls. In addi-
tion, ELF exposure significantly inhibited the protein expression level of
vascular endothelial growth factor compared to a sham-exposed group.
These results suggest that ELF reduced endothelial cells’ ability to form
new vessels. Therefore, it may be used as a therapeutic approach to
cancer by reducing angiogenesis (Delle et al., 2013).

One well-known reason for cell death is the damage caused by hy-
droxyl free radicals. Several studies have indicated that ELF can en-
hance the formation of hydroxyl free radical from hydrogen peroxide
via an iron-catalyzed process (Yakymenko et al., 2016). According to
previous studies, ELF can be used to treat a variety of cancer types due
to the intracellular free iron content of cancer cells, which makes them
sensitive to ELF (Lai and Singh, 2010). One recent study investigated a
radiofrequency identification (RFID) micro-transponder system emit-
ting 134 kHz (KHz; 103 Hz) ELF. The results indicated that an RFID
microchip could kill leukemia, breast cancer, and liver cancer cells. The
study results also clarified one particularly important point concerning
the effects of ELF. According to the data reported, ELF can affect cancer
cells via free radicals, which form due to the Fenton reaction (Dikalova
et al., 2001). RFID may therefore be an effective and target-specific
alternative treatment for cancer (Lai et al., 2016).

In contrast to studies reporting therapeutic effects of ELF, several

Fig. 1. The figure represents the effect mechanism of EMF in two consecutive steps within the cell.
The free radicals generated by Fenton and nitric oxide reactions show effects in the cell, modified from (Lai and Singh, 2004).
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others have indicated that ELF exhibits harmful effects. A study asses-
sing the long-term effects of ELF exposure on rats exposed subject an-
imals to 50 Hz ELF over 16 months, for 12 h per day. The incidence of
cancer, organ weights, and male fertility were then evaluated. The only
increase determined was in the incidence of chronic myelogenous
leukemia in bone marrow, while no increase was observed in other
tumor types (Qi et al., 2015). In addition, Kostoff and Lau (2013) re-
ported interactive effects from combination of EMF and other agents on
biological systems. They emphasized that the effect of EMF emerged or
increased as a result of combination with different agents. One large-
scale rodent study reported carcinogenic effects of life-span co-exposure
to 50 Hz ELF and 50mg/L-formaldehyde on rats aged 6–104 weeks. No
significant changes were observed in the occurrence rate of benign
tumors. Histopathological evaluation showed that the application of
50 Hz ELF did not increase the risk of cancer, but combined exposure to
ELF and formaldehyde increased the carcinogenic effects in a statisti-
cally significant manner. In addition, ELF and formaldehyde exposure
increased the rate of thyroid C-cell carcinomas, hemolymphoreticular
neoplasias, and malignant tumors. This suggests the possibility of sy-
nergy between exposure to 50 Hz ELF and formaldehyde in terms of
carcinogenicity (Soffritti et al., 2016).

3.2. Radio frequency effects

Radio frequency (RF) consists of both EF and MF in the range
10MHz (MHz; 106 Hz)–300 GHz (GHz; 109 Hz). The effects of devices
such as mobile phones and microwave ovens, which are very frequently
used in daily life, are evaluated in this section. The biological effects of
RF exposure are classified into cellular, pharmacological, intercellular,
enzymatic, and carcinogenic categories. Publications reporting contra-
dictory suggestions and interpretations continue to produce updated
data concerning EMF. The latest reports by the WHO (WHO, 2007), the
Scientific Committee on Emerging and Newly Identified Health Risks
(SCENIHR) (SCENIHR, 2015), the German Committee for Radiation
Protection (SSK) (SSK, 2011), and the Swiss Federal Office for the En-
vironment (BAFU) (BAFU, 2014) suggest that there is insufficient evi-
dence to show adverse health effects of EMF exposure with the excep-
tion of tissue heating levels. The International Commission on Non-
Ionizing Radiation Protection (ICNIRP) published a review for the as-
sessment of in vivo and in vitro genotoxicity studies (ICNIRP, 2009). In
this section, we review the latest in vivo and in vitro studies and con-
troversial results reported by these organizations (Fig. 2).

3.2.1. Genotoxicity
It is very difficult to determine the induction or alteration of genetic

material resulting from RF due to the different methods applied and the
variety of organisms recruited. Genotoxicity is generally evaluated by
the comet assay, micronucleus assay, and chromosome aberrations.
Table 2 summarizes both therapeutic and adverse effects of RF on
genotoxicity and carcinogenicity.

One subject of particular interest is the difference in effect levels
between ELF and RF exposure. A number of ELF and RF studies have
been conducted with genotoxic results, but the results of these are still
controversial. Exposure conditions were standardized in one study, so
that findings of possible genotoxicity caused by 50MHz and 1800MHz
RF could be controlled and compared. Genotoxic effects were in-
vestigated after mouse spermatocyte-derived cell lines had been ex-
posed to GSM-Talk mode RF and at 50 Hz ELF for 24 h. The alkaline
comet assay and immunofluorescence revealed an increased DSBs in
ELF exposed cells, whereas no significant difference was observed in RF
exposed cells. Formamidopyrimidine DNA glycosylase (FPG) altered
alkaline comet assay and RF increased oxidative damage to DNA bases
at a specific absorption rate (SAR) value of 4W/kg, whereas ELF ex-
posure caused no significant difference. These results indicate that ELF
and RF may create different patterns of DNA damage and induce gen-
otoxicity at relative high intensities due to their alternate potential
mechanisms (Duan et al., 2015).

One of the most important agents explaining the genotoxic effects of
RF is ROS. The genotoxic effects that can occur in cells or tissues fol-
lowing exposure to RF can be easily explained by observing the levels of
ROS. Drug-sensitive human neuroblastoma SH-SY5Y cells were exposed
to 75MHz RF. Mn-dependent superoxide dismutase (MnSOD)-based
antioxidant protection, ROS production, and cell viability were eval-
uated to reveal the antioxidant response. The findings showed that RF
could increase MnSOD-based antioxidant protection and cellular re-
sistance against a pro-oxidant stimulus and reduce ROS production
through an increase in mitochondrial antioxidant protection (Falone
et al., 2016a). In contrast to the results of this research, many studies
have reported the ROS-producing effects of RF. Spiral ganglion neurons
(SGN) of rats were treated with lipopolysaccharide (LPS) to induce
inflammation in an in vitro model before exposure to 1800MHz RF for
24 h. ROS production, DNA damage, ultrastructural changes and ex-
pression of Beclin 1 and LC3-II were investigated. No DNA damage or
ultrastructural cellular changes were observed in normal SGN groups.
However, increased ROS levels, presence of lysosomes and autopha-
gosomes, and increased expression of Beclin 1 and LC3-II were observed
in LPS-induced and RF-exposed groups. Sensitivity to RF in SGN cells
suggests that the resultant increase in LPS interaction represents the
basis of the RF action mechanism in the ROS system (Zuo et al., 2015).
Hou et al. (2015) investigated the effects of 1800MHz exposure on
mouse embryonic fibroblasts in order to analyze ROS, DNA damage,
and apoptosis. Researchers found increased levels of both intracellular
ROS and numbers of late-apoptotic cells in the 1-, 4- and 8-h RF exposed
groups, however DSB numbers were slightly, but not significantly in-
creased in the 2-, 4-, 6- and 8-h RF exposure groups in comparison to
controls. These results once again confirmed the adverse effects of EMF
in terms of ROS.

Ataxia telangiectasia mutated gene (Atm), which is regarded as a
principal protector of genomic stability, was investigated in mouse
embryonic fibroblasts in order to reveal the effects of 1800MHz RF
exposure on genotoxicity. DNA single-strand breaks (SSBs) and DSBs
were detected using alkaline and neutral comet assays. Increased SSBs
and DSBs were observed in 1800MHz RF exposed Atm-deficient mouse
embryonic fibroblasts. Additionally, the phosphorylation and expres-
sion of X-ray repair cross-complementing protein 1 (Xrcc1), which are
critical to DNA damage repair mechanisms, increased in both Atm-
proficient and Atm-deficient groups. The activation of DNA repair
mechanisms revealed that 1800MHz RF increased DNA damage and
corrupted cellular homeostasis (Sun et al., 2016).

Fig. 2. EMF-induced cellular changes are summarized. The increase in permeability of
calcium channels (Roux et al., 2008), misfolded protein (Mancinelli et al., 2004) and free
radical production (Zeni et al., 2007), and the effects of oxidative stress on DNA and RNA
(Diem et al., 2005; Zeni et al., 2007) were shown.
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3.2.2. Carcinogenicity
Numerous studies to date have reported inconsistent results con-

cerning the carcinogenic effects of RF. While some studies have not
determined any relationship between RF exposure and tumor devel-
opment (Auvinen et al., 2002; Christensen et al., 2005; Hardell and
Carlberg, 2009; Hepworth et al., 2006), others have reported increased
risk-related outcomes (Hardell et al., 2013; Lonn et al., 2004). Study
results are also inconsistent in terms of whether RF exposure has car-
cinogenic effects on biological samples in vitro (Buttiglione et al., 2007;
French et al., 1998; Zeni et al., 2012).

In one recently published study, human glioblastoma cells were
exposed to 1950MHz RF for 12, 24, and 48 h and then injected sub-
cutaneously into mice to reveal the effects of 3G mobile phone signals
on cellular parameters in vitro and possible carcinogenic effects in vivo.
RF exposure caused no change in any of the parameters investigated,
such as apoptosis, proliferation, migration, invasion, expression of
apoptotic (bcl-2, bax) and proliferative (emp-1, c-myc) genes, and
morphology of glioblastoma cell lines at the end of 28 days (Liu et al.,
2015). However, Akhavan-Sigari et al. (2014) reported a significant
relation between increased mutant p53 expression in the peripheral
zone of tumors and mobile phone (1800MHz) EMF exposure exceeding
3 h per day.

In addition to in vivo and in vitro studies, epidemiological studies
have been conducted to clarify the relationship between cancer and
mobile phones. The relationship between the incidence of malignant
neoplasms of the central nervous system and increasing mobile phone
use among young people was investigated in Japan. Mobile phone
usage data from 7550 participants was analyzed. Between 1993 and
2010, the incidence of malignant neoplasms was significantly high in
both males and females at the ages of 20 and 30. However, there was no
significant increase among younger individuals aged 10–19 years.
These results prevent a precise judgment because it was expected that
there would be an increased risk in the young population group, as this
population is exposed to daily cell phone use. The authors reported a
number of limitations in that study; the estimation of cancer incidences
was based on regional cancer registries, therefore the data cannot be
generalized for national figures. Furthermore, the questionnaire was
sent only to schools, so the data do not cover mobile phone use in the
general population. Authors report the absence of data on length of cell
phone usage to be another limitation of the study (Sato et al., 2016).

Despite the limitations of that research, Chapman et al. (2016) ex-
amined gender- and age-specific incidence in 19,858 males and 14,222
females diagnosed with brain cancer. The effects of mobile phone use
on brain cancer incidence rates were compared with observed and ex-
pected data. Contrary to expectation, data analysis showed that ob-
served incidence rates were lower in all age groups, except for subjects
aged ≥ 70 years. The increase in the ≥ 70 age group may not be
significant because the increase commenced before the use of mobile
phones. Similarly, there was no consistent elevation in the incidence
rates of all primary brain cancers or gliomas in the New Zealand and
Korean populations over a 15-year period from 1995 to 2010 and a 5-
year period from 2002 to 2007, respectively (Kim et al., 2015; Yoon
et al., 2015). Hsu et al. (2013) didn’t report any evident correlation
between the incidence of mobile phone use and malignant brain tu-
mors. In contrast to these results, an enhanced risk of glioma associated
with mobile phone use was observed in a pool case study in Sweden in
1997–2003 and 2007–2009 (Hardell and Carlberg, 2015).

Results from in vitro and in vivo studies represent strong evidence of
a carcinogenic effect of RF, but epidemiological studies have not yet
confirmed this. More up-to-date and precise epidemiological studies are
now needed in addition to those involving limitations. It is also ex-
pected that WHO will soon provide a more comprehensive report on the
effects of RF on cancer development.

4. Conclusion

The findings reported in the current study highlight the difficulty
involved in evaluating the effects of EMF is very difficult. Each of the
various study types, in vitro, in vivo, animal experimental, and epide-
miological, has its own specific advantages and disadvantages re-
garding certain frequency ranges and their specific parameters (sample
size, dosimetry, study design). International authorities (WHO, ICNIRP
and IARC) and local institutions have also published differing and in-
consistent reports about the effects of EMF. These inconsistencies make
the true situation even more difficult to analyze and interpret.

In vitro and experimental studies are more advantageous than epi-
demiological studies since their results are significantly more reliable.
The effects of EMF can be shown using a large sample size in standar-
dized laboratory conditions. The ability to verify the observed effects,
to reveal the action mechanisms of EMF, and to test the hypotheses
make the results of experimental studies more valuable. On the other
hand, epidemiological studies and human experimental studies yield
data concerning humans. The disadvantage of epidemiological studies
is a relatively small sample size and a lack of prospective data acqui-
sition. For this reason, it is difficult to evaluate the results on a per
person basis. When the findings of different study types provide evi-
dence that EMF has the same effect, the idea of causality may then
emerge. However, most recent experimental studies clearly indicate the
harmful effects of EMF. For this reason, the planning and evaluation of
epidemiological studies should be more careful.

The US national toxicology program is the flagship-testing program
for the US government. In 2016, they release the results of a long-term
animal bioassay that studied the impact of cell phone radiation levels
equivalent to that which humans received today in their lifetimes. They
found that rats exposed to cell phone radiation developed significantly
more highly malignant very rare tumors of the brain. They also found
unusual patterns and significant rates of malignancies in the nerve
leading to the heart. Epidemiologic studies have in fact found elevated
rates of brain cancer's and acoustic neuroma's. Thus, the findings of this
report should be taken quite seriously (Wyde et al., 2017).

There is some confusion about the fact that the report was issued as
a partial report in 2016. The leaders of that program have explained
that the report was issued as a partial report because they were quite
concerned and surprised at these findings especially in light of the
human results showing similar increased cancers. In fact, the report is
an important report on the brain and heart tumors in the studies.

It is well documented that EMF exposure might cause indirect
harmful effects via DNA damage, and DNA breaks, and oxidative stress.
In very short duration and low frequencies of non-ionizing radiation
exposure might be resulted in no effects. However, the average person
living in a city is exposed to non-ionizing radiation whole day in dif-
ferent ways. Over time exposure might be resulted with the builds up
ROS and creates indirect harmful effects.

To summarize, in the light of the information gathered in this study,
EMF shows its biological effects by acting indirectly on cellular frag-
ments. Long-term disruption of hemostasis may lead to the disruptive
effects of EMF. Furthermore, it should not be forgotten that EMF is
energy and EMF may show entropy-accelerating effects on every object
present in the environment. The safety of EMF has not clearly been
proved, and thus the necessary precautions must be taken to ensure our
health and safety.
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